
Chapter 6

Multinomial Response
Models

We now turn our attention to regression models for the analysis of categorical
dependent variables with more than two response categories. Several of
the models that we will study may be considered generalizations of logistic
regression analysis to polychotomous data. We first consider models that
may be used with purely qualitative or nominal data, and then move on to
models for ordinal data, where the response categories are ordered.

6.1 The Nature of Multinomial Data

Let me start by introducing a simple dataset that will be used to illustrate
the multinomial distribution and multinomial response models.

6.1.1 The Contraceptive Use Data

Table 6.1 was reconstructed from weighted percents found in Table 4.7 of
the final report of the Demographic and Health Survey conducted in El
Salvador in 1985 (FESAL-1985). The table shows 3165 currently married
women classified by age, grouped in five-year intervals, and current use of
contraception, classified as sterilization, other methods, and no method.

A fairly standard approach to the analysis of data of this type could
treat the two variables as responses and proceed to investigate the question
of independence. For these data the hypothesis of independence is soundly
rejected, with a likelihood ratio χ2 of 521.1 on 12 d.f.
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Table 6.1: Current Use of Contraception By Age
Currently Married Women. El Salvador, 1985

Age Contraceptive Method All
Ster. Other None

15–19 3 61 232 296
20–24 80 137 400 617
25–29 216 131 301 648
30–34 268 76 203 547
35–39 197 50 188 435
40–44 150 24 164 338
45–49 91 10 183 284
All 1005 489 1671 3165

In this chapter we will view contraceptive use as the response and age as
a predictor. Instead of looking at the joint distribution of the two variables,
we will look at the conditional distribution of the response, contraceptive use,
given the predictor, age. As it turns out, the two approaches are intimately
related.

6.1.2 The Multinomial Distribution

Let us review briefly the multinomial distribution that we first encountered
in Chapter 5. Consider a random variable Yi that may take one of several
discrete values, which we index 1, 2, . . . , J . In the example the response is
contraceptive use and it takes the values ‘sterilization’, ‘other method’ and
‘no method’, which we index 1, 2 and 3. Let

πij = Pr{Yi = j} (6.1)

denote the probability that the i-th response falls in the j-th category. In
the example πi1 is the probability that the i-th respondent is ‘sterilized’.

Assuming that the response categories are mutually exclusive and ex-
haustive, we have

∑J
j=1 πij = 1 for each i, i.e. the probabilities add up to

one for each individual, and we have only J − 1 parameters. In the exam-
ple, once we know the probability of ‘sterilized’ and of ‘other method’ we
automatically know by subtraction the probability of ‘no method’.

For grouped data it will be convenient to introduce auxiliary random
variables representing counts of responses in the various categories. Let ni

denote the number of cases in the i-th group and let Yij denote the number
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of responses from the i-th group that fall in the j-th category, with observed
value yij .

In our example i represents age groups, ni is the number of women in
the i-th age group, and yi1, yi2, and yi3 are the numbers of women steril-
ized, using another method, and using no method, respectively, in the i-th
age group. Note that

∑
j yij = ni, i.e. the counts in the various response

categories add up to the number of cases in each age group.
For individual data ni = 1 and Yij becomes an indicator (or dummy)

variable that takes the value 1 if the i-th response falls in the j-th category
and 0 otherwise, and

∑
j yij = 1, since one and only one of the indicators

yij can be ‘on’ for each case. In our example we could work with the 3165
records in the individual data file and let yi1 be one if the i-th woman is
sterilized and 0 otherwise.

The probability distribution of the counts Yij given the total ni is given
by the multinomial distribution

Pr{Yi1 = yi1, . . . , YiJ = yiJ} =

(
ni

yi1, . . . , yiJ

)
πyi1

i1 . . . πyiJ
iJ (6.2)

The special case where J = 2 and we have only two response categories is
the binomial distribution of Chapter 3. To verify this fact equate yi1 = yi,
yi2 = ni − yi, πi1 = πi, and πi2 = 1− πi.

6.2 The Multinomial Logit Model

We now consider models for the probabilities πij . In particular, we would
like to consider models where these probabilities depend on a vector xi of
covariates associated with the i-th individual or group. In terms of our
example, we would like to model how the probabilities of being sterilized,
using another method or using no method at all depend on the woman’s age.

6.2.1 Multinomial Logits

Perhaps the simplest approach to multinomial data is to nominate one of
the response categories as a baseline or reference cell, calculate log-odds for
all other categories relative to the baseline, and then let the log-odds be a
linear function of the predictors.

Typically we pick the last category as a baseline and calculate the odds
that a member of group i falls in category j as opposed to the baseline as
πi1/πiJ . In our example we could look at the odds of being sterilized rather
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than using no method, and the odds of using another method rather than
no method. For women aged 45–49 these odds are 91:183 (or roughly 1 to
2) and 10:183 (or 1 to 18).
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Figure 6.1: Log-Odds of Sterilization vs. No Method and
Other Method vs. No Method, by Age

Figure 6.1 shows the empirical log-odds of sterilization and other method
(using no method as the reference category) plotted against the mid-points
of the age groups. (Ignore for now the solid lines.) Note how the log-odds
of sterilization increase rapidly with age to reach a maximum at 30–34 and
then decline slightly. The log-odds of using other methods rise gently up to
age 25–29 and then decline rapidly.

6.2.2 Modeling the Logits

In the multinomial logit model we assume that the log-odds of each response
follow a linear model

ηij = log
πij

πiJ
= αj + x′iβj , (6.3)

where αj is a constant and βj is a vector of regression coefficients, for j =
1, 2, . . . , J − 1. Note that we have written the constant explicitly, so we will
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assume henceforth that the model matrix X does not include a column of
ones.

This model is analogous to a logistic regression model, except that the
probability distribution of the response is multinomial instead of binomial
and we have J − 1 equations instead of one. The J − 1 multinomial logit
equations contrast each of categories 1, 2, . . . J − 1 with category J , whereas
the single logistic regression equation is a contrast between successes and
failures. If J = 2 the multinomial logit model reduces to the usual logistic
regression model.

Note that we need only J − 1 equations to describe a variable with J
response categories and that it really makes no difference which category we
pick as the reference cell, because we can always convert from one formulation
to another. In our example with J = 3 categories we contrast categories 1
versus 3 and 2 versus 3. The missing contrast between categories 1 and
2 can easily be obtained in terms of the other two, since log(πi1/πi2) =
log(πi1/πi3)− log(πi2/πi3).

Looking at Figure 6.1, it would appear that the logits are a quadratic
function of age. We will therefore entertain the model

ηij = αj + βjai + γja
2
i , (6.4)

where ai is the midpoint of the i-th age group and j = 1, 2 for sterilization
and other method, respectively.

6.2.3 Modeling the Probabilities

The multinomial logit model may also be written in terms of the original
probabilities πij rather than the log-odds. Starting from Equation 6.3 and
adopting the convention that ηiJ = 0, we can write

πij =
exp{ηij}∑J

k=1 exp{ηik}
. (6.5)

for j = 1, . . . , J . To verify this result exponentiate Equation 6.3 to obtain
πij = πiJ exp{ηij}, and note that the convention ηiJ = 0 makes this formula
valid for all j. Next sum over j and use the fact that

∑
j πij = 1 to obtain

πiJ = 1/
∑

j exp{ηij}. Finally, use this result on the formula for πij .
Note that Equation 6.5 will automatically yield probabilities that add

up to one for each i.
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6.2.4 Maximum Likelihood Estimation

Estimation of the parameters of this model by maximum likelihood proceeds
by maximization of the multinomial likelihood (6.2) with the probabilities πij

viewed as functions of the αj and βj parameters in Equation 6.3. This usu-
ally requires numerical procedures, and Fisher scoring or Newton-Raphson
often work rather well. Most statistical packages include a multinomial logit
procedure.

In terms of our example, fitting the quadratic multinomial logit model
of Equation 6.4 leads to a deviance of 20.5 on 8 d.f. The associated P-value
is 0.009, so we have significant lack of fit.

The quadratic age effect has an associated likelihood-ratio χ2 of 500.6
on four d.f. (521.1− 20.5 = 500.6 and 12− 8 = 4), and is highly significant.
Note that we have accounted for 96% of the association between age and
method choice (500.6/521.1 = 0.96) using only four parameters.

Table 6.2: Parameter Estimates for Multinomial Logit Model
Fitted to Contraceptive Use Data

Parameter Contrast
Ster. vs. None Other vs. None

Constant -12.62 -4.552
Linear 0.7097 0.2641
Quadratic -0.009733 -0.004758

Table 6.2 shows the parameter estimates for the two multinomial logit
equations. I used these values to calculate fitted logits for each age from 17.5
to 47.5, and plotted these together with the empirical logits in Figure 6.1.
The figure suggests that the lack of fit, though significant, is not a serious
problem, except possibly for the 15–19 age group, where we overestimate the
probability of sterilization.

Under these circumstances, I would probably stick with the quadratic
model because it does a reasonable job using very few parameters. However,
I urge you to go the extra mile and try a cubic term. The model should pass
the goodness of fit test. Are the fitted values reasonable?

6.2.5 The Equivalent Log-Linear Model*

Multinomial logit models may also be fit by maximum likelihood working
with an equivalent log-linear model and the Poisson likelihood. (This section
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will only be of interest to readers interested in the equivalence between these
models and may be omitted at first reading.)

Specifically, we treat the random counts Yij as Poisson random variables
with means µij satisfying the following log-linear model

logµij = η + θi + α∗j + x′iβ
∗
j , (6.6)

where the parameters satisfy the usual constraints for identifiability. There
are three important features of this model:

First, the model includes a separate parameter θi for each multinomial
observation, i.e. each individual or group. This assures exact reproduction
of the multinomial denominators ni. Note that these denominators are fixed
known quantities in the multinomial likelihood, but are treated as random
in the Poisson likelihood. Making sure we get them right makes the issue of
conditioning moot.

Second, the model includes a separate parameter α∗j for each response
category. This allows the counts to vary by response category, permitting
non-uniform margins.

Third, the model uses interaction terms x′iβ
∗
j to represent the effects of

the covariates xi on the log-odds of response j. Once again we have a ‘step-
up’ situation, where main effects in a logistic model become interactions in
the equivalent log-linear model.

The log-odds that observation i will fall in response category j relative
to the last response category J can be calculated from Equation 6.6 as

log(µij/µiJ) = (α∗j − α∗J) + x′i(β
∗
j − β∗J). (6.7)

This equation is identical to the multinomial logit Equation 6.3 with αj =
α∗j − α∗J and βj = β∗j − β∗J . Thus, the parameters in the multinomial logit
model may be obtained as differences between the parameters in the corre-
sponding log-linear model. Note that the θi cancel out, and the restrictions
needed for identification, namely ηiJ = 0, are satisfied automatically.

In terms of our example, we can treat the counts in the original 7×3 table
as 21 independent Poisson observations, and fit a log-linear model including
the main effect of age (treated as a factor), the main effect of contraceptive
use (treated as a factor) and the interactions between contraceptive use (a
factor) and the linear and quadratic components of age:

logµij = η + θi + α∗j + β∗j ai + γ∗j a
2
i (6.8)

In practical terms this requires including six dummy variables representing
the age groups, two dummy variables representing the method choice cat-
egories, and a total of four interaction terms, obtained as the products of
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the method choice dummies by the mid-point ai and the square of the mid-
point a2

i of each age group. Details are left as an exercise. (But see the Stata
notes.)

6.3 The Conditional Logit Model

In this section I will describe an extension of the multinomial logit model that
is particularly appropriate in models of choice behavior, where the explana-
tory variables may include attributes of the choice alternatives (for example
cost) as well as characteristics of the individuals making the choices (such as
income). To motivate the extension I will first reintroduce the multinomial
logit model in terms of an underlying latent variable.

6.3.1 A General Model of Choice

Suppose that Yi represents a discrete choice among J alternatives. Let Uij

represent the value or utility of the j-th choice to the i-th individual. We will
treat the Uij as independent random variables with a systematic component
ηij and a random component εij such that

Uij = ηij + εij . (6.9)

We assume that individuals act in a rational way, maximizing their utility.
Thus, subject i will choose alternative j if Uij is the largest of Ui1, . . . , UiJ .
Note that the choice has a random component, since it depends on random
utilities. The probability that subject i will choose alternative j is

πij = Pr{Yi = j} = Pr{max(Ui1, . . . , UiJ) = Uij}. (6.10)

It can be shown that if the error terms εij have standard Type I extreme
value distributions with density

f(ε) = exp{−ε− exp{−ε}} (6.11)

then (see for example Maddala, 1983, pp 60–61)

πij =
exp{ηij}∑
exp{ηik}

, (6.12)

which is the basic equation defining the multinomial logit model.
In the special case where J = 2, individual i will choose the first al-

ternative if Ui1 − Ui2 > 0. If the random utilities Uij have independent
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extreme value distributions, their difference can be shown to have a logistic
distribution, and we obtain the standard logistic regression model.

Luce (1959) derived Equation 6.12 starting from a simple requirement
that the odds of choosing alternative j over alternative k should be inde-
pendent of the choice set for all pairs j, k. This property is often referred to
as the axiom of independence from irrelevant alternatives. Whether or not
this assumption is reasonable (and other alternatives are indeed irrelevant)
depends very much on the nature of the choices.

A classical example where the multinomial logit model does not work
well is the so-called “red/blue bus” problem. Suppose you have a choice of
transportation between a train, a red bus and a blue bus. Suppose half the
people take the train and half take the bus. Suppose further that people
who take the bus are indifferent to the color, so they distribute themselves
equally between the red and the blue buses. The choice probabilities of π =
(.50, .25, .25) would be consistent with expected utilities of η = (log 2, 0, 0).

Suppose now the blue bus service is discontinued. You might expect that
all the people who used to take the blue bus would take the red bus instead,
leading to a 1:1 split between train and bus. On the basis of the expected
utilities of log 2 and 0, however, the multinomial logit model would predict
a 2:1 split.

Keep this caveat in mind as we consider modeling the expected utilities.

6.3.2 Multinomial Logits

In the usual multinomial logit model, the expected utilities ηij are modeled
in terms of characteristics of the individuals, so that

ηij = x′iβj .

Here the regression coefficients βj may be interpreted as reflecting the effects
of the covariates on the odds of making a given choice (as we did in the
previous section) or on the underlying utilities of the various choices.

A somewhat restrictive feature of the model is that the same attributes
xi are used to model the utilities of all J choices.

6.3.3 Conditional Logits

McFadden (1973) proposed modeling the expected utilities ηij in terms of
characteristics of the alternatives rather than attributes of the individuals.
If zj represents a vector of characteristics of the j-th alternative, then he
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postulated the model
ηij = z′jγ.

This model is called the conditional logit model, and turns out to be equiva-
lent to a log-linear model where the main effect of the response is represented
in terms of the covariates zj .

Note that with J response categories the response margin may be repro-
duced exactly using any J −1 linearly independent attributes of the choices.
Generally one would want the dimensionality of zj to be substantially less
than J . Consequently, conditional logit models are often used when the
number of possible choices is large.

6.3.4 Multinomial/Conditional Logits

A more general model may be obtained by combining the multinomial and
conditional logit formulations, so the underlying utilities ηij depend on char-
acteristics of the individuals as well as attributes of the choices, or even
variables defined for combinations of individuals and choices (such as an in-
dividual’s perception of the value of a choice). The general model is usually
written as

ηij = x′iβj + z′ijγ (6.13)

where xi represents characteristics of the individuals that are constant across
choices, and zij represents characteristics that vary across choices (whether
they vary by individual or not).

Some statistical packages have procedures for fitting conditional logit
models to datasets where each combination of individual and possible choice
is treated as a separate observation. These models may also be fit using any
package that does Poisson regression. If the last response category is used as
the baseline or reference cell, so that ηiJ = 0 for all i, then the zij should be
entered in the model as differences from the last category. In other words,
you should use z∗ij = zij − ziJ as the predictor.

6.3.5 Multinomial/Conditional Probits

Changing the distribution of the error term in Equation 6.9 leads to alterna-
tive models. A popular alternative to the logit models considered so far is to
assume that the εij have independent standard normal distributions for all
i, j. The resulting model is called the multinomial/conditional probit model,
and produces results very similar to the multinomial/conditional logit model
after standardization.
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A more attractive alternative is to retain independence across subjects
but allow dependence across alternatives, assuming that the vector εi =
(εi1, . . . , εiJ)′ has a multivariate normal distribution with mean vector 0 and
arbitrary correlation matrix R. (As usual with latent variable formulations
of binary or discrete response models, the variance of the error term cannot
be separated from the regression coefficients. Setting the variances to one
means that we work with a correlation matrix rather than a covariance
matrix.)

The main advantage of this model is that it allows correlation between
the utilities that an individual assigns to the various alternatives. The main
difficulty is that fitting the model requires evaluating probabilities given
by multidimensional normal integrals, a limitation that effectively restricts
routine practical application of the model to problems involving no more
than three or four alternatives.

For further details on discrete choice models see Chapter 3 in Mad-
dala (1983).

6.4 The Hierarchical Logit Model

The strategy used in Section 6.2.1 to define logits for multinomial response
data, namely nominating one of the response categories as a baseline, is only
one of many possible approaches.

6.4.1 Nested Comparisons

An alternative strategy is to define a hierarchy of nested comparisons between
two subsets of responses, using an ordinary logit model for each comparison.
In terms of the contraceptive use example, we could consider (1) the odds of
using some form of contraception, as opposed to none, and (2) the odds of
being sterilized among users of contraception. For women aged 15–49 these
odds are 1494:1671 (or roughly one to one) and 1005:489 (or roughly two to
one).

The hierarchical or nested approach is very attractive if you assume that
individuals make their decisions in a sequential fashion. In terms of con-
traceptive use, for example, women may first decide whether or nor they
will use contraception. Those who decide to use then face the choice of a
method. This sequential approach may also provide a satisfactory model for
the “red/blue bus” choice.

Of course it is also possible that the decision to use contraception would
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be affected by the types of methods available. If that is the case, a multino-
mial logit model may be more appropriate.
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Figure 6.2: Log-Odds of Contraceptive Use vs. No Use and
Sterilization vs. Other Method, by Age.

Figure 6.2 shows the empirical log-odds of using any method rather than
no method, and of being sterilized rather than using another method among
users, by age. Note that contraceptive use increases up to age 35–39 and then
declines, whereas the odds of being sterilized among users increase almost
monotonically with age.

The data suggest that the hierarchical logits may be modeled as quadratic
functions of age, just as we did for the multinomial logits. We will therefore
consider the model

ηij = αj + βjai + γja
2
i , (6.14)

where ai is the mid-point of the i-th age group, j = 1 for the contraceptive
use equation and j = 2 for the method choice equation.

6.4.2 Maximum Likelihood Estimation

An important practical feature of the hierarchical logit model is that the
multinomial likelihood factors out into a product of binomial likelihoods,
which may then be maximized separately.
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I will illustrate using the contraceptive use data with 3 response cate-
gories, but the idea is obviously more general. The contribution of the i-th
individual or group to the multinomial likelihood (ignoring constants) has
the form

Li = πyi1
i1 π

yi2
i2 π

yi3
i3 , (6.15)

where the πij are the probabilities and the yij are the corresponding counts of
women sterilized, using other methods, and using no methods, respectively.

Multiply and divide this equation by (πi1 +πi2)yi1+yi2 , which is the prob-
ability of using contraception raised to the total number of users of contra-
ception, to obtain

Li =
(

πi1

πi1 + πi2

)yi1
(

πi2

πi1 + πi2

)yi2

(πi1 + πi2)yi1+yi2πyi3
i3 . (6.16)

Let ρi1 = πi1 + πi2 denote the probability of using contraception in age
group i, and let ρi2 = πi1/(πi1 + πi2) denote the conditional probability
of being sterilized given that a woman is using contraception. Using this
notation we can rewrite the above equation as

Li = ρyi1
i2 (1− ρi2)yi2ρyi1+yi2

i1 (1− ρi1)yi3 . (6.17)

The two right-most terms involving the probability of using contracep-
tion ρi1 may be recognized, except for constants, as a standard binomial
likelihood contrasting users and non-users. The two terms involving the
conditional probability of using sterilization ρi2 form, except for constants,
a standard binomial likelihood contrasting sterilized women with users of
other methods. As long as the parameters involved in the two equations are
distinct, we can maximize the two likelihoods separately.

In view of this result we turn to Table 6.1 and fit two separate models.
Fitting a standard logit model to the contraceptive use contrast (sterilization
or other method vs. no method) using linear and quadratic terms on age
gives a deviance of 6.12 on four d.f. and the parameter estimates shown in
the middle column of Table 6.3. Fitting a similar model to the method choice
contrast (sterilization vs. other method, restricted to users) gives a deviance
of 10.77 on four d.f. and the parameter estimates shown in the rightmost
column of Table 6.3.

The combined deviance is 16.89 on 8 d.f. (6.12+10.77 = 16.89 and 4+4 =
8). The associated P-value is 0.031, indicating lack of fit significant at the 5%
level. Note, however, that the hierarchical logit model provides a somewhat
better fit to these data than the multinomial logit model considered earlier,
which had a deviance of 20.5 on the same 8 d.f.
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Table 6.3: Parameter Estimates for Hierarchical Logit Model
Fitted to Contraceptive Use Data

Parameter Contrast
Use vs. No Use Ster. vs. Other

Constant -7.180 -8.869
Linear 0.4397 0.4942
Quadratic -0.006345 -0.005674

To look more closely at goodness of fit I used the parameter estimates
shown on Table 6.3 to calculate fitted logits and plotted these in Figure 6.2
against the observed logits. The quadratic model seems to do a reasonable
job with very few parameters, particularly for overall contraceptive use. The
method choice equation overestimates the odds of choosing sterilization for
the age group 15–19, a problem shared by the multinomial logit model.

The parameter estimates may also be used to calculate illustrative odds
of using contraception or sterilization at various ages. Going through these
calculations you will discover that the odds of using some form of contracep-
tion increase 80% between ages 25 and 35. On the other hand, the odds of
being sterilized among contraceptors increase three and a half times between
ages 25 and 35.

6.4.3 Choice of Contrasts

With three response categories the only possible set of nested comparisons
(aside from a simple reordering of the categories) is

{1,2} versus {3}, and
{1} versus {2}.

With four response categories there are two main alternatives. One is to
contrast

{1, 2} versus {3, 4},
{1} versus {2}, and
{3} versus {4}.

The other compares
{1} versus {2, 3, 4},
{2} versus {3, 4}, and
{3} versus {4}.



6.5. MODELS FOR ORDINAL RESPONSE DATA 15

The latter type of model, where one considers the odds of response Y = j
relative to responses Y ≥ j, is known as a continuation ratio model (see
Fienberg, 1980), and may be appropriate when the response categories are
ordered.

More generally, any set of J − 1 linearly independent contrasts can be
selected for modeling, but only orthogonal contrasts lead to a factorization
of the likelihood function. The choice of contrasts should in general be based
on the logic of the situation.

6.5 Models for Ordinal Response Data

Most of the models discussed so far are appropriate for the analysis of nom-
inal responses. They may be applied to ordinal data as well, but the models
make no explicit use of the fact that the response categories are ordered.
We now consider models designed specifically for the analysis of responses
measured on an ordinal scale. Our discussion follows closely McCullagh
(1980).

6.5.1 Housing Conditions in Copenhagen

We will illustrate the application of models for ordinal data using the data
in Table 6.4, which was first published by Madsen (1976) and was repro-
duced in Agresti (1990, p. 341). The table classifies 1681 residents of twelve
areas in Copenhagen in terms of the type of housing they had, their feeling
of influence on apartment management, their degree of contact with other
residents, and their satisfaction with housing conditions.

In our analysis of these data we will treat housing satisfaction as an
ordered response, with categories low, medium and high, and the other three
factors as explanatory variables.

6.5.2 Cumulative Link Models

All of the models to be considered in this section arise from focusing on
the cumulative distribution of the response. Let πij = Pr{Yi = j} denote
the probability that the response of an individual with characteristics xi

falls in the j-th category, and let γij denote the corresponding cumulative
probability

γij = Pr{Yi ≤ j} (6.18)
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Table 6.4: Housing Condition in Copenhagen

Housing Type Influence Contact Satisfaction
low medium high

Tower block low low 21 21 28
high 14 19 37

medium low 34 22 36
high 17 23 40

high low 10 11 36
high 3 5 23

Apartments low low 61 23 17
high 78 46 43

medium low 43 35 40
high 48 45 86

high low 26 18 54
high 15 25 62

Atrium houses low low 13 9 10
high 20 23 20

medium low 8 8 12
high 10 22 24

high low 6 7 9
high 7 10 21

Terraced houses low low 18 6 7
high 57 23 13

medium low 15 13 13
high 31 21 13

high low 7 5 11
high 5 6 13

that the response falls in the j-th category or below, so

γij = πi1 + πi2 + . . .+ πij . (6.19)

Let g(.) denote a link function mapping probabilities to the real line.
Then the class of models that we will consider assumes that the transformed
cumulative probabilities are a linear function of the predictors, of the form

g(γij) = θj + x′iβ. (6.20)

In this formulation θj is a constant representing the baseline value of the
transformed cumulative probability for category j, and β represents the
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effect of the covariates on the transformed cumulative probabilities. Since
we write the constant explicitly, we assume that the predictors do not include
a column of ones. Note that there is just one equation: if xik increases by
one, then all transformed cumulative probabilities increase by βk. Thus, this
model is more parsimonious than a multinomial logit or a hierarchical logit
model; by focusing on the cumulative probabilities we can postulate a single
effect. We will return to the issue of interpretation when we consider specific
link functions.

These models can also be interpreted in terms of a latent variable. Specif-
ically, suppose that the manifest response Yi results from grouping an under-
lying continuous variable Y ∗i using cut-points θ1 < θ2 < . . . < θJ−1, so that
Yi takes the value 1 if Y ∗i is below θ1, the value 2 if Y ∗i is between θ1 and θ2,
and so on, taking the value J if Y ∗i is above θJ−1. Figure 6.3 illustrates this
idea for the case of five response categories.

1 2 3 4 5

Figure 6.3: An Ordered Response and its Latent Variable

Suppose further that the underlying continuous variable follows a linear
model of the form

Y ∗i = x′iβ
∗ + εi, (6.21)

where the error term εi has c.d.f. F (εi). Then, the probability that the
response of the i-th individual will fall in the j-th category or below, given
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xi, satisfies the equation

γij = Pr{Y ∗i < θj} = Pr{εi < θj − x′iβ
∗} = F (θj − x′iβ

∗) (6.22)

and therefore follows the general form in Equation (6.20) with link given by
the inverse of the c.d.f. of the error term

g(γij) = F−1(γij) = θj − x′iβ
∗ (6.23)

and coefficients β∗ = −β differing only in sign from the coefficients in the
cumulative link model. Note that in both formulations we assume that
the predictors xi do not include a column of ones because the constant is
absorbed in the cutpoints.

With grouped data the underlying continuous variable Y ∗ will have real
existence and the cutpoints θj will usually be known. For example income
data are often collected in broad categories, and all we known is the interval
where an observation falls, i.e. < $25,000, between $25,000 and $50,000, and
so on.

With ordinal categorical data the underlying continuous variable will
often represent a latent or unobservable trait, and the cutpoints will not
be known. This would be the case, for example, if respondents are asked
whether they support a balance budget amendment, and the response cate-
gories are strongly against, against, neutral, in favor, and strongly in favor.
We could imagine an underlying degree of support Y ∗i and thresholds θ1 to
θ4, such that when the support is below θ1 one is strongly against, when the
support exceeds θ1 but not θ2 one is against, and so on, until the case where
the support exceeds θ4 and one is strongly for the amendment.

While the latent variable interpretation is convenient, it is not always
necessary, since some of the models can be interpreted directly in terms of
the transformation g(.) of the cumulative probabilities.

6.5.3 The Proportional Odds Model

The first model we will consider is a direct extension of the usual logistic
regression model. Instead of applying the logit transformation to the re-
sponse probabilities πij , however, we apply it to the cumulative response
probabilities γij , so that

logit(γij) = log
γij

1− γij
= θj + x′iβ. (6.24)

Some authors refer to this model as the ordered logit model, because it is a
generalization of the logit model to ordered response categories. McCullagh
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(1980) calls it the proportional odds model, for reasons that will be apparent
presently. Exponentiating (6.24) we find that the odds of Yij ≤ j, in words,
the odds of a response in category j or below, are

γij

1− γij
= λj exp{x′iβ} (6.25)

where λj = exp{θj}. The λj may be interpreted as the baseline odds of a
response in category j or below when x = 0. The effect of the covariates
x is to raise or lower the odds of a response in category j or below by the
factor exp{x′iβ}. Note that the effect is a proportionate change in the odds
of Yi ≤ j for all response categories j. If a certain combination of covariate
values doubles the odds of being in category 1, it also doubles the odds of
being in category 2 or below, or in category 3 or below. Hence the name
proportional odds.

This model may also be obtained from the latent variable formulation
assuming that the error term εi has a standard logistic distribution. In this
case the cdf is

F (η) =
exp{η}

1 + exp{η}
(6.26)

and the inverse cdf is the logit transformation. The β∗ coefficients may then
be interpreted as linear effects on the underlying continuous variable Y ∗i .

The proportional odds model is not a log-linear model, and therefore
it can not be fit using the standard Poisson trick. It is possible, however,
to use an iteratively re-weighted least squares algorithm very similar to the
standard algorithm for generalized linear models, for details see McCullagh
(1980).

We will illustrate this model applying it to the housing satisfaction data
in Table 6.4. Let us start by noting that the log-likelihood for a saturated
multinomial model that treats each of the 24 covariate patterns as a different
group is -1715.71. Fitting a proportional odds model with additive effects of
housing type, influence in management and contact with neighbors, yields a
log-likelihood of -1739.57, which corresponds to a deviance (compared to the
saturated multinomial model) of 47.73 on 40 d.f. To calculate the degrees
of freedom note that the saturated multinomial model has 48 parameters (2
for each of 24 groups), while the additive proportional odds model has only
8 (2 threshold parameters, 3 for housing type, 2 for influence and one for
contact). The 95% critical point of the χ2

40 distribution is 55.8, so you might
think that this model fits the data.

To be thorough, however, we should investigate interaction effects. The
models with one two-factor interaction have log-likelihoods of -1739.47 (in-



20 CHAPTER 6. MULTINOMIAL RESPONSE MODELS

cluding contact × influence), -1735.24 (including housing × contact), and
-1728.32 (including housing × influence), with corresponding deviance re-
ductions of 0.21, 8.67 and 22.51, at the expense of 2, 3 and 6 degrees of
freedom, respectively. Clearly the only interaction of note is that of housing
× influence, which has a P-value of 0.001. Adding this term gives a model
deviance of 25.22 on 34 d.f. and an excellent fit to the data.

Table 6.5 shows parameter estimates for the final model with all three
predictors and a housing × influence interaction. The table lists the cut-
points and the regression coefficients.

Table 6.5: Parameter Estimates for Ordered Logit Model
(Latent Variable Formulation)

Parameter Estimate Std. Error z-ratio
Apartments -1.1885 .1972 -6.026
Atrium house -.6067 .2446 -2.481
Terraced house -1.6062 .2410 -6.665
Influence medium -.1390 .2125 -0.654
Influence high .8689 .2743 3.167
Contact high .3721 .0960 3.876
Apart × Influence med 1.0809 .2658 4.066
Apart × Influence high .7198 .3287 2.190
Atrium × Influence med .6511 .3450 1.887
Atrium × Influence high -.1556 .4105 -0.379
Terrace × Influence med .8210 .3307 2.483
Terrace × Influence high .8446 .4303 1.963
Cutpoint 1 -.8881 .1672
Cutpoint 2 .3126 .1657

Note first the cutpoints: -.89 and .31, corresponding to cumulative odds
of 0.41 and 1.37, or to cumulative probabilities of 0.29 and 0.58, for the
reference cell. Considering residents of tower blocks with low influence in
management and low contact with neighbors, we estimate that 29% have low
satisfaction, 29% (58-29) have medium satisfaction, and 42% (100-58) have
high satisfaction. (These values are fairly close to the observed proportions.)

Before we discuss interpretation of the remaining coefficients, we must
note that I have reported the coefficients corresponding to the latent variable
formulation (the β∗’s) rather than the cumulative link coefficients (the β’s),
which have opposite sign. Thus, a positive coefficient is equivalent to a shift
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to the right on the latent scale, which increases the odds of being to the
right of a cutpoint. Equation (6.24) models the odds of being to the left of
a cutpoint, which would then decrease. I prefer the sign used here because
the interpretation is more straightforward. A positive coefficient increases
one’s underlying satisfaction, which makes a ‘high’ response more likely.

The coefficient of contact indicates that residents who have high contact
with their neighbors are generally more satisfied than those who have low
contact. The odds of high satisfaction (as opposed to medium or low), are
45% higher for high contact than for low contact, as are the odds of medium
or high satisfaction (as opposed to low). The fact that the effect of contact
on the odds is the same 45% for the two comparisons is a feature of the
model.

To interpret the effects of the next two variables, type of housing and
degree of influence, we have to allow for their interaction effect. One way
to do this is to consider the effect of type of housing when the residents feel
that they have low influence on management; then residents of apartments
and houses (particularly terraced houses) are less satisfied than residents of
tower blocks. Feeling that one has some influence on management generally
increases satisfaction; the effect of having high rather than low influence is to
increase the odds of medium or high satisfaction (as opposed to low) by 138%
for residents of tower blocks, 390% for apartment dwellers, 104% for residents
of atrium houses and 455% for those who live in terraced houses. Having
medium influence is generally better than having low influence (except for
tower clock residents), but not quite as good as having high influence (except
possibly for residents of atrium houses).

Although we have interpreted the results in terms of odds, we can also
interpret the coefficients in terms of a latent variable representing degree of
satisfaction. The effect of having high contact with the neighbors, as com-
pared to low contact, is to shift one’s position on the latent satisfaction scale
by 0.37 points. Similarly, having high influence on management, as com-
pared to low influence, shifts one’s position by an amount that varies from
0.71 for residents of atrium houses to 1.71 for residents of terraced houses.
Interpretation of these numbers must be done by reference to the standard
logistic distribution, which is depicted in Figure 6.3. This symmetric distri-
bution has mean 0 and standard deviation π/

√
3 = 1.81. The quartiles are

±1.1, and just over 90% of the area lies between -3 and 3.
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6.5.4 The Ordered Probit Model

The ordered probit model, first considered by Aitchison and Silvey (1957),
results from modeling the probit of the cumulative probabilities as a linear
function of the covariates, so that

Φ−1(γij) = θj + x′iβ (6.27)

where Φ() is the standard normal cdf. The model can also be obtained from
the latent-variable formulation assuming that the error term has a standard
normal distribution, and this is usually the way one would interpret the
parameters.

Estimates from the ordered probit model are usually very similar to es-
timates from the ordered logit model—as one would expect from the simi-
larity of the normal and the logistic distributions—provided one remembers
to standardize the coefficients to correct for the fact that the standard nor-
mal distribution has variance one, whereas the standard logistic has variance
π2/3.

For the Copenhagen data, the ordered probit model with an interaction
between housing type and influence has a log-likelihood of -1728.67, corre-
sponding to a deviance of 25.9 on 34 d.f., almost indistinguishable from the
deviance for the ordered logit model with the same terms. Table 6.6 shows
parameter estimates for this model.

The cutpoints can be interpreted in terms of z-scores: the boundary
between low and medium satisfaction is at z = −0.54 and the boundary
between medium and high satisfaction is at z = 0.19. These values leave
Φ(−.54) = 0.29 or 29% of the reference group in the low satisfaction category,
Φ(0.19)−Φ(−0.54) = 0.28 or 28% in the medium satisfaction category, and
1− Φ(0.19) = 0.42 or 42% in the high satisfaction category.

The remaining coefficients can be interpreted as in a linear regression
model. For example, having high contact with the neighbors, compared to
low contact, increases one’s position in the latent satisfaction scale by 0.23
standard deviations (or increases one’s z-score by 0.23), everything else being
equal.

Note that this coefficient is very similar to the equivalent value obtained
in the ordered logit model. A shift of 0.37 in a standard logistic distribution,
where σ = π/

√
3 = 1.81, is equivalent to a shift of 0.37/1.81 = 0.21 standard

deviations, which in turn is very similar to the ordered probit estimate of
0.23 standard deviations. A similar comment applies to the other coefficients.
You may also wish to compare the Wald tests for the individual coefficients
in Tables 6.5 and 6.6, which are practically identical.
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Table 6.6: Parameter Estimates for Ordered Probit Model
(Latent Variable Formulation)

Parameter Estimate Std. Error z-ratio
Apartments -.7281 .1205 -6.042
Atrium house -.3721 .1510 -2.464
Terraced house -.9790 .1456 -6.725
Influence medium -.0864 .1303 -0.663
Influence high .5165 .1639 3.150
Contact high .2285 .0583 3.918
Apart × Influence med .6600 .1626 4.060
Apart × Influence high .4479 .1971 2.273
Atrium × Influence med .4109 .2134 1.925
Atrium × Influence high -.0780 .2496 -0.312
Terrace × Influence med .4964 .2016 2.462
Terrace × Influence high .5217 .2587 2.016
Cutpoint 1 -.5440 .1023
Cutpoint 2 .1892 .1018

6.5.5 Proportional Hazards

A third possible choice of link is the complementary log-log link, which leads
to the model

log(− log(1− γij)) = θj + x′iβ (6.28)

This model may be interpreted in terms of a latent variable having a (re-
versed) extreme value (log Weibull) distribution, with cdf

F (η) = 1− exp{− exp{η}} (6.29)

This distribution is asymmetric, it has mean equal to negative Euler’s con-
stant −0.57722 and variance π2/6 = 1.6449. The median is log log 2 =
−0.3665 and the quartiles are -1.2459 and 0.3266. Note that the inverse cdf
is indeed, the complementary log-log transformation in Equation (6.28).

This model can also be interpreted in terms of a proportional hazards
model. The hazard function plays a central role in survival analysis, and
will be discussed in detail in the next Chapter.
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6.5.6 Extensions and Other Approaches

The general cumulative link model of Section 6.5.2 will work with any mono-
tone link function mapping probabilities to the real line, but the three choices
mentioned here, namely the logit, probit, and complementary log-log, are by
far the most popular ones. McCullagh (1980) has extended the basic model
by relaxing the assumption of constant variance for the latent continuous
variable. His most general model allows a separate scale parameter for each
multinomial observation, so that

g(γij) =
θj + x′iβ

τi
(6.30)

where the τi are unknown scale parameters. A constraint, such as τ1 = 0, is
required for identification. More generally, τi may be allowed to depend on
a vector of covariates.

An alternative approach to the analysis of ordinal data is to assign scores
to the response categories and then use linear regression to model the mean
score. Ordinary least squares procedures are not appropriate in this case,
but Grizzle et al. (1969) have proposed weighted least-squares procedures
that make proper allowances for the underlying independent multinomial
sampling scheme. For an excellent discussion of these models see Agresti
(1990, Section 9.6).

A similar approach, used often in two-way contingency tables correspond-
ing to one predictor and one response, is to assign scores to the rows and
columns of the table and to use these scores to model the interaction term in
the usual log-linear model. Often the scores assigned to the columns are the
integers 1, 2, . . . , J − 1, but other choices are possible. If integer scores are
used for both rows and columns, then the resulting model has an interesting
property, which has been referred to as uniform association. Consider cal-
culating an odds ratio for adjacent rows i and i+ 1, across adjacent columns
or response categories j and j + 1, that is

ρij =
πi,j/πi,j+1

πi+1,j/πi+1,j+1
(6.31)

Under the additive log-linear model of independence, this ratio is unity for all
i and j. Introducing an interaction term based on integer scores, of the form
(αβ)ij = γij, makes the odds ratio constant across adjacent categories. This
model often produces fits similar to the proportional odds model, but the
parameters are not so easily interpreted. For further details see Haberman
(1974), Goodman (1979) or Agresti (1990, Section 8.1).
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A fourth family of models for ordinal responses follows from introducing
constraints in the multinomial logit model. Let βj denote the vector of
coefficients for the j-th equation, comparing the j-th category with the last
category, for j = 1, 2, . . . , J − 1. The most restrictive model assumes that
these coefficients are the same for all contrasts, so βj = β for all j. A less
restrictive assumption is that the coefficients have a linear trend over the
categories, so that βj = jβ. Anderson (1984) has proposed a model termed
the stereotype model where the coefficients are proportional across categories,
so βj = γjβ, with unknown proportionality factors given by scalars γj .

One advantage of the cumulative link models considered here is that
the parameter estimates refer to the cumulative distribution of the manifest
response (or the distribution of the underlying latent variable) and therefore
are not heavily dependent on the actual categories (or cutpoints) used. In
particular, we would not expect the results to change much if we were to
combine two adjacent categories, or if we recoded the response using fewer
categories. If the cumulative odds are indeed proportional before collapsing
categories, the argument goes, they should continue to be so afterwards.

In contrast, inferences based on log-linear or multinomial logit models
apply only to the actual categories used. It is quite possible, for example,
that odds ratios that are relatively constant across adjacent categories will
no longer exhibit this property if some of the categories are combined. These
considerations are particularly relevant if the categories used are somewhat
arbitrary.


