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This unit considers survival models with a random effect represent-
ing unobserved heterogeneity of frailty, a term first introduced by Vau-
pel et al. (1979). We consider models without covariates and then move
on to the more general case. These notes are intended to complement
Rodriguez (1995).

1 The Statistics of Heterogeneity

Standard survival models assume homogeneity: all individuals are subject
to the same risks embodied in the hazard A(t) or the survivor functions
S(t). Models with covariates relax this assumption by introducing observed
sources of heterogeneity. Here we consider unobserved sources of hetero-
geneity that are not readily captured by covariates.

1.1 Conditional Hazard and Survival

A popular approach to modeling such sources is the multiplicative frailty
model, where the hazard for individual ¢ at time ¢ is

Ai(t) = A(t]0;) = 0:\o(2),

the product of an individual-specific random effect 6; representing the indi-
vidual’s frailty, and a baseline hazard A\o(¢). Note that this is essentially a
proportional hazards model.

The individual hazard \;(t) is interpreted as a conditional hazard given
0;. Associated with it we have a conditional survival function

Si(t) = S(t|6;) = So(t)?,
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representing the probability of being alive at ¢ given the random effect 6;.
The twist is that the random effect 6; is not observed (perhaps not
observable), but is assumed to have some a distribution with density g(6).

1.2 Unconditional Hazard and Survival

To obtain the unconditional survival function we need to “integrate out” the

unobserved random effect:
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We integrate from 0 to oo because frailty is non-negative. If frailty was dis-
crete, taking values 64, ..., 0, with probabilities 7, ..., 7 then the integral
would be replaced by a sum
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In both cases S(t) is the average S;(t). In a demographic context S(t) is often
referred to as the population survivor function, while S;(t) is the individual
survivor function.

To obtain the unconditional hazard we start from the unconditional sur-
vival and take negative logs to obtain the cumulative hazard

A(t) = —logS(t

= —log/ S(t6)g
= —log/ So(t)?g(0)do
0

The next step is to take derivatives w.r.t. . Assuming that we can take
the derivative operator inside the integral we find the unconditional hazard

to be o 4
i) = T S0 0)d0 5 03a(0)0(1a(0)d9
Jo~ So()?(6)df Jo° So()Pg(0)do
where we used the fact that So(t)? = e=?2(®) 5o that
S80(t)! = 0 (1) =~ (t)e M,

and the last exponential can be recognized as Sp(t)°.



Note that the population hazard A(t) is a weighted average of the individ-
ual hazards \;(t) with weights equal to the density of # times the probability
of surviving to t:

S(116)9(8) = So(t)’9(6),

Why can’t we calculate the population hazard as a simple average of the
individual hazards, the way we calculated the population survivor function?

1.3 Expected Frailty of Survivors

We now show that the weights in the above expression represent the condi-
tional distribution of frailty # among survivors to age ¢t. From first principles,
the density of # among survivors is

Pr{T >t0}g(0)  S(t0)g®)  So(t)’g(0)
IO 20 =57 =1y~ T SW0)g0)d0 [ So(t)g(0)d0’

which are indeed the weights in the expression for A(t). The expected frailty
of survivors can be calculated as

o 5 0So(t)?g(0)do
E9T>t:/ 0g(6|T > t)do — L0 .
OIT =)= |, 0ol = 1)d6 =~ 30 (6)d0
From this result is becomes clear that
At) = () EO|T > t). (1)

In words, the unconditional (population) hazard at t is the baseline (indi-
vidual) hazard times the mean frailty of survivors to t.

Typically, the mean frailty of survivors declines over time as the more
frail tend to die earlier. As a result, the population hazard declines more
steeply (or increases less rapidly) than the individual hazard. This result is
the source of interesting paradoxes.

2 Frailty Distributions

We now specialize our results considering a few alternative assumptions
about the distribution of frailty.



2.1 Gamma Frailty

A convenient assumption used by many authors is that 6 has a gamma dis-
tribution. This distribution has the appropriate range (0,00) and is mathe-
matically tractable.

The density of a gamma distribution with parameters o and S is

9(0) = 6%t 5% T (a),
where I' is the gamma function. The mean and variance are

E0)=— and var(6)
g
so the coefficient of variation o/ is 1/4/a.
It is often convenient to take E(f) = 1 so a = 3 = 1/02. This entails no
loss of generality because the average level of frailty can always be absorbed
into the baseline hazard.
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2.1.1 Unconditional Survival and Hazard

The unconditional survivor function is

s = [ su)’g0)do

0
> 1
— —QAo(t)ea—l —B0 pa de.
/0 e e 7B —F(a)

The trick now is to consolidate the coefficients of # and complete a gamma
density:

0 1 BOJ
S(t) = / goLe= (Bl (5 1 Ag(t))™ d9
0=, Pt MOt B K@)
The last fraction on the right does not depend on 6 and can be taken out
of the integral. What’s left is a gamma density with parameters « and
B+ Ao(t), and therefore integrates to one. This gives

The result is known as a Pareto distribution of the second kind. If frailty
has mean one and variance o2, we write a = 3 = 1/5? to obtain

1

S0 = T m e

(2)

4



the unconditional (population) survivor function under gamma frailty.
To find the unconditional (population) hazard we first take negative logs
to obtain the cumulative hazard

A(t) = alog(B + Ao(t)) — arlog(B),

and then take derivatives w.r.t. ¢, to obtain

Oé/\()(t)
AMt) = —————.
() B+ Ao(?)
If frailty has mean one and variance o we obtain
Ao(t)
AMt) = ————— 3
(*) 1+ 02Ao(t)’ (3)

the unconditional (population) hazard function under gamma frailty.
Example: Gamma mixtures of exponentials are a popular model for un-

observed heterogeneity. If the hazard is constant for each individual but

people are heterogenous and frailty has a gamma distribution then the pop-

ulation hazard is N

M= T o

where ) is the average individual hazard and o is the variance of frailty.

2.1.2 The Frailty of Survivors

In view of our earlier result connecting A(t) and E(0|T > t), the expected
frailty of survivors to ¢ under gamma frailty must be

1

BOT 20 =1 080

In fact, we can obtain the whole distribution of frailty among survivors to
t. The conditional density of 8 given T >t is

S(t[0)g(6)
S(t)
e—GAo(t)ea—le—Beﬁa/F(a)

[

B+Ac®)™
904—16—(5+A0(t))9 (/8 + Ao(t))a/r(a)a

90T >t) =




a gamma density with parameters o and 4 Ag(t). Thus, if frailty at birth
has a gamma distribution with mean one and variance o2, so a = 3 = 1/02,
then frailty of survivors to ¢ has a gamma distribution with
E@|IT >t) = - and var(0|T > t) = 0—2.
- 14+ 02Ap(t) - (14 02Ag(t))?

Note that Ag(t) is a monotone non-decreasing function of t. As a result,
the mean frailty of survivors declines over time. The variance of frailty of
survivors also declines over time, so the population becomes more homoge-
neous in absolute terms. However, the coefficient of variation stays constant
over time, so the population does not become more homogeneous in relative
terms (compared to the mean).

Note also that mean frailty will decline more rapidly over time (or selec-
tivity will operate more quickly) when (1) the population is more heteroge-
neous to start with (larger o), or (2) the risk is higher (larger Ag(t)).

2.2 Inverse Gaussian Frailty

Another distribution that can be used to represent frailty is the inverse
Gaussian distribution, which arises as the first passage time in Brownian
motion.

Hougaard (1984) has shown that if  has an inverse Gaussian distribution
with mean and variance o2 then the mean frailty of survivors to time ¢ is

1

EOIT 20 = 4 aat )i

It then follows from our general results that the unconditional (population)
hazard is
Ao(t)

V1+202700(t)

The unconditional (population) survivor function can also be obtained ex-
plicitly, and turns out to be

S(t) = exp{—%(\/m_ 1)},

a result that can easily be verified by taking negative logs to get A(¢) and
differentiating w.r.t. ¢ to obtain A(¢). Can you derive this result?

A(t) =



2.2.1 Notes on the Inverse Gaussian Distribution

The inverse Gaussian distribution has density

g(0) = \/593 e\/4a97a/9750’
T

depending on parameters « and 3 (called ¢ and 6 by Hougaard (1984), who
uses z for our #). This distribution has mean and variance

E) = % and var(f) = %alpﬁ_?’ﬂ,

so the coefficient of variation o/ is 1/ \@(qﬁ)l/ 4. Choosing o = f3 gives a

[

. 1,3
mean of one and variance var(f) = a2 2

with variance o2 we take o = 3 = ﬁ

Hougaard shows that under the multiplicative frailty model the distri-
bution of 8 among survivors to t is also inverse Gaussian, with parameters
a and 5+ Ag(t). In particular, the mean frailty of survivors is

%, so to get a distribution

o 1
EOT 20 =\ 3780 ~ A+ 200he@)

Interestingly, the distribution of frailty among those who die at ¢ is a “gen-
eralized” inverse Gaussian.

2.3 A More General Family

If you look again at the expressions for F(0|T > t), the mean frailty of
survivors to ¢, under gamma and inverse Gaussian frailty, you will notice a
certain resemblance. In fact, you could write

1
(1+ ZAo(t))F’

where k = 1 gives the result for gamma frailty and k = 1/2 gives the result
for inverse Gaussian frailty.

One naturally wonders whether this result makes sense more generally.
Does this formula represent expected frailty of survivors under some distri-
bution for other values of k7

Hougaard (1986) shows that Equation 4 makes sense for any k < 1,
yielding a family based on the stable distributions, which includes the inverse
Gaussian as a special case.

BT > 1) = (4)



A distribution is called “stable” if the distribution of the sum of n
i.i.d. r.v.’s is the same as the distribution of n'/® times one of them for
some « € [0,2]. In symbols,

D(X1+ Xo+ ...+ Xp) = D(na Xy),

where D denotes distribution. For example the normal distribution N (u, o?)
is stable with a = 1, because 3.1 ; X; ~ N(nu,no?).

Aalen (1988) showed that Equation 4 also makes sense for k > 1, showing
that all the remaining cases could be obtained by assuming that € has a
compound Poisson distribution.

To construct this distribution suppose N is distributed Poisson and

X1, Xs, ... are i.i.d. gamma r.v.’s, and define
o 0 it N=0
] Xi 4.+ Xy ifN>0

One way to think about this distribution is to imagine a population that has
infinitely many strata, one with no frailty, one where frailty is gamma, one
where frailty is the sum of two gammas, and so on, with relative stratum
sizes given by a Poisson distribution.

Note that this distribution leads to improper survival functions, because
for some people 8 = 0 and the event of interest has no risk of ever occurring.

2.4 Frailty Transforms

A very useful tool in frailty analysis is the Laplace transform. Given a
function f(x), the Laplace transform, considered as a function of a real
argument s is defined as

[e.@]
L(s) :/0 e ¥ f(x)dx.
The reason why this is useful in our context is that the Laplace transform
has exactly the same form as the unconditional survival function. Think of
f(z) as the frailty distribution g() and s as the cumulative baseline hazard
Ao(t) and you obtain

S(t) = / e 2004 (0)do
0

= L(Ao(?)),

where £ denotes the Laplace transform.



Because Laplace transforms are well-know, and many are tabulated, our
task is easier. For example the Laplace transform of the gamma distribution

with parameters a and f is
s )“
L(s) = .
(s) <B +s

Evaluating this at s = Ag(¢) we obtain the same result as before, but with
a lot less work.
Vaupel (1990) has defined the frailty transform as the function

F(m,s) :/ 0me=%0g(0)d6.
0

Note that F(0, s) is the good old Laplace transform, and F(m, s) gives the
m-~th moment of the distribution of 6 at birth. For the gamma distribution
the frailty transform is

Mat+m)  p°

PO = Thmy e

The connection with Laplace transforms has practical as well as theoretical
importance.

e Given a function f(z), computation of the Laplace transform is a well
understood problem with efficient algorithms.

e Given the Laplace transform L(s), recovery of the function f(x) by
inversion is an ill-conditioned problem, in the sense that slight changes
in £(s) can induce huge fluctuations in f(z).

3 The Inversion Formula

So far we have gone from conditional to unconditional (or if you wish from
individual to population) hazard and survival by a process of “mixing”. Can
we go the other way? Can we infer the unconditional (individual) hazard
and survival from the conditional (population) counterparts by a process of
“unmixing”?

The answer is yes, provided we know the distribution of frailty (or how
the mixing was done). In the next two subsections we provide inversion
formulas for gamma and inverse Gaussian frailty. These results can be used
to express population survival functions as gamma or inverse Gaussian mix-
tures of individual survival functions.



3.1 Gamma Mixtures

We have shown that under gamma frailty the unconditional hazard can be

written as w
A(t) = L'
1+ O'2A0(t)
We will integrate the left-hand side to obtain the cumulative hazard A(t).
In order to do this it helps to rewrite the previous equation as a derivative

(1) = 5 5 lo8(1 + Ao (1),

because then we can integrate tp pbtain
1
A(t) = —5log(1 + a?Ao(t)),
where we used the boundary condition Ag(¢) = 0. This gives
1+ 02 Ag(t) = e ),

or

Ao() = - (e7*A0) _ 1.

2
o
Taking derivatives w.r.t. ¢t we obtain the conditional (individual) baseline
hazard as a function of the unconditional (population) hazard

Ao(t) = A(t)e” A, (5)

Ezample: We noted earlier the popularity of gamma mixtures of expo-
nentials. We now show that the exponential distribution itself can be viewed
as a gamma mixture of something else. If the population survival function
is exponential then

At) =X and A(t) = At

Plugging these functions into our inversion formula we find the conditional
(individual) hazard to be

Xo(t) = Ae?™ M,

which we recognize as a Gompertz or extreme value hazard, where the log
of the hazard is a linear function of ¢.

Thus, we have the remarkable result that a population that shows a con-
stant hazard over time may result from individuals with gamma-distributed
heterogeneity and Gompertz hazards that increase exponentially with time.

10



You may begin to suspect that we have a bit of an identification problem
here, because a flat population hazard could also result from a homogeneous
population where the hazard for each individual is constant over time.

No amount of data can help us distinguish between these two models
because they have identical observable consequences.

3.2 Inverse Gaussian Mixtures

We can also obtain an inversion formula for inverse Gaussian frailty. Recall
that the unconditional hazard was

_ Ao(t)
(t) = (1 + 2020 ()72

As before, we write the right-hand side as a derivative, so integrating is
simpler:

_1d 2 1/2
A(t) = ;a(l +20°Ao(t)) /.
To integrate from 0 to ¢ we impose the boundary condition A(¢) = 0 and
obtain

A(t) = (1 -+ 20 Ao(0) " ~ 1),

which incidentally answers the question posed earlier, on how to derive the
unconditional survival for inverse Gaussian frailty (see page 2.2). Now we
use this result to solve for the baseline integrated hazard:

(1+20%8(1)"? = 1+0%A(1)
1+ 202A0(t) = (1+ 02A(t))?
o2 2 _
Ao(t) = et QAU(;)) -

Now take derivatives w.r.t. t to obtain
_ b 2 9
Xo(t) = 2022(1 + o A(t))o=A(t)
= At)(1+o?A(t)).

This result gives us a baseline hazard A\g(t) that can be mixed using an
inverse Gaussian distribution to obtain any given population hazard A(t).

Ezxample: Using this result we should be able to produce an exponential
distribution as an inverse Gaussian mixture of something else. Let’s try. If
the population survival function is exponential then

At) =X and A(t) = M,

11



and plugging these into our general result we obtain
Ao(t) = M1+ 02X\t) = X + 02\t

a linear hazard.

Thus, a population with a constant hazard could consist of an inverse
Gaussian mix of individuals with linearly rising hazards. Note that o2 is
not specified, so the steepness of the individual hazards is arbitrary.

My conclusion from these results is that models with unobserved hetero-
geneity are not identified in the sense that we can not distinguish between
competing models that have identical observable consequences.

However, it is very important to know that the data we observe could
have been generated by different mechanisms. For example in the analysis
of waiting time to conception the hazard typically declines over time. This
could be due to the fact that the hazard actually declines for each individual.
But is is also possible that the individual hazard is constant and the observed
decline reflects a selection effect.

4 Models with Covariates

Many of the ideas discussed so far extend to models with covariates. Here
we will summarize some of the key ideas.

4.1 The Omitted Variable Bias

We know from linear models that omitting a variable from a model in-
troduces a bias unless the omitted variable is uncorrelated with the other
predictors in the model. In hazard models it turns out that we obtain a bias
even if the the omitted variable is uncorrelated with the predictors.

To see this point consider a simple problem with two dummy variables,
z1 and xo. Suppose these variables are independent and % of the population
falls in each of the four categories defined by them.

Suppose further that both variables affect survival time. When both are
zero the hazard is constant at Ag(t) = 1, x; doubles the risk, so P =2,
and xo triples the risk, so e = 3.

Under these assumptions we have four exponentials with a proportional
hazards structure. If ¢ denotes the value of 1 and j the value of xs, the
hazard is A\;;(t) = 2'37 for i = 0,1;j =0, 1.

Now suppose we do not observe xa. The survival functions we observe
for x1 = 7 are a mixture of the curves for zo = 0 and x9 = 1 with equal

12



weights, so we can write

We can take negative logs to

Si(t)

1
Sio(t) + 551'1(75)
~2it | 56—2 3t

obtain the cumulative hazards and then dif-

ferentiate to obtain the hazards. (If you do this numerically you can just
difference the cumulative hazards.) Figure 1 shows the resulting hazards.

hazard

0.025 0.035

0.015

0.0

0.2

0.4 0.6 0.8 1.0

time

Figure 1: Proportional Hazards with Unobserved Heterogeneity

First, the hazards are not constant, even though we started with expo-

nentials.

This shows the effect of selection. Individuals with x9 = 1 die

more quickly than those with o = 0 and are selected out of the risk set, so
the observed hazard declines over time.

Second, the hazards are not proportional, even though we started with a
proportional hazards structure. Recall that the hazard for 1 = 1 was twice
the hazard for z; = 0, holding everything else constant. This is now true
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only at t = 0. After that the curves come closer together and the effect of
x1 = 1 is less than 2. If you fitted a proportional hazards model to data
generated from this model you would underestimate the effect of x;.

The reason for this result is that selection happens more quickly when
the hazard is higher (as shown before). The group with z; = 1 has a higher
hazard (in fact, twice the hazard)—and therefore can select out the frail
(those with z9 = 1) more quickly—than the group with z; = 0.

This happened even though x; and x5 were independent. The key to
understanding these results is to realize that they were independent at t = 0
but they are no longer independent at ¢ > 0. The proportion “frail” (i.e. with
x9 = 1) is 50% for 1 = 1 and for z1 = 0 at the outset, but is 12% for 1 = 1
compared to 2% for 1 = 0 at t = 1. Can you reproduce these percents? As
you can imagine, the situation is worse if 1 and xy are correlated.

4.2 Models with Unobserved Heterogeneity

One possible solution to the problem of unobserved heterogeneity is to intro-
duce a random effect 6 in the hope that it will capture the effects of omitted
variables that are independent of the X’s in the model.
The general model we will entertain is a proportional hazards model with
a frailty term, where the hazard at time ¢ for an individual with covariates
x and frailty 0 is
At,2,0) = O (t)e®

where 6 is a random effect with mean zero and a distribution that does not
depend on the observed covariates.

Estimation of this model can be done by maximum likelihood using
standard techniques if you can assume

e a parametric form for the baseline hazard \o(t), and
e a distribution for the random effect 6.

For example Newman and McCullogh analyzed birth intervals using
gamma frailty (here representing fecundability). An alternative tractable
functional form is the inverse Gaussian.

It is possible to relax one of these two assumptions, but not both.

4.3 Heckman-Singer

Heckman and Singer (1984), in a very influential paper, noted some insta-
bility of parameter estimates depending on the type of assumption made
about the distribution of frailty.
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As a solution, they proposed using a non-parametric maximum likeli-
hood estimator (NPMLE) of the distribution of frailty. Following on earlier
work by Laird and others, they show that the NPMLE is a discrete mix-
ing distribution that assigns positive mass to a finite (usually small) set of
points of support.

Specifically, the non-parametric estimate takes values 601, 0o, ..., 0, with
probabilities mq, w2, . . ., 7 for some value of k. The distribution has 2(k—1)
parameters if one restricts # to have mean one.

Usually one fits a model with & = 2 and increases k£ by adding an addi-
tional point of support until the likelihood fails to improve, at which point
two of the points often coalesce. When one of the points has negligible risk
(0 ~ 0) the result can be interpreted as a mover-stayer model.

Flexibility in estimation of the frailty distribution requires parametric
assumptions about the hazard. A common choice used in the program CTM
(Continuous Time Models) developed by Heckman and associates is the Box-
Cox specification

th—1 th —1

)\O(t) =+ 51 )\1 + 52 )\2 )

where t* is interpreted as logt for A = 0. This includes as special cases the
exponential, Weibull, Gompertz and a log-quadratic hazard.

4.4 Trussell-Richards

Trussell and Richards (1985) wondered whether models estimated using the
Heckman-Singer technique were sensitive to the choice of baseline hazard.
They found that the results were indeed sensitive, a conclusion confirmed in
further work by Trussell and Montgomery.

In fact, it seems clear that the results should be more sensitive to the
choice of the baseline hazard than to the choice of the distribution of the
unobservable. Why? Recall that the unconditional survival function S(t),
the only piece of the puzzle that we can actually estimate, has the structure
of a Laplace transform

S(t,x) = Ly (No(t)e™?),

so that large variations in g(6) tend to be “smoothed” out and result in
small variations in S(¢,x).

As a result, I think that one is usually be better off using a flexible
specification of the baseline hazard combined with a parametric assumption
for the distribution of frailty.
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4.5 The Identification Problem

One difficulty with these models is that the underlying assumption of propor-
tionality of hazards is confounded with unobserved heterogeneity. Consider
again Figure 1. We know that the underlying hazards are proportional, but
look non-proportional because we are missing x2. But I could have gener-
ated the same hazards without any omitted variables by assuming that the
baseline hazard declines over time and the effect of z1 is non-proportional.

To further explore these issues we extend our earlier results on unob-
served heterogeneity to the case where we have covariates. We start from a
proportional hazards model where the conditional or subject-specific hazard
is

At,2,0) = O (t)e®

and 60 has density g(f). To obtain the unconditional or population-average
hazard we integrate out 6 using the appropriate conditional density

A, ) :/ At z,0)9(0|T > t, z)do.
0
Using the proportional hazards structure we can write this as
A, 2) = Ag(£)e™ / 8g(6|T > t,)db.
0

The integral can be recognized as the expected frailty of survivors, so we
have our first result:

At,z) = Xo(t)e* PE(O|T > t, ). (6)
The form of the expectation can be worked out for specific distributions.
From our earlier results, we can write

1

EO|T >t =
( ‘ fl 7$) (1—}—%0‘2)\0@)6"”/5)]“’

with £ = 1 for gamma frailty and k = % for inverse Gaussian frailty. If we
substitute this result on the formula for the hazard and take logs we can
write the model as

log A(t, ) = a(t) + 2'B 4+ ~(t, x),

where a(t) = logAo(t) is the log-baseline hazard, representing the main
effect of duration, 2’3 is the log-relative risk, representing the main effects
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of the covariates, and v(t,x) = log E(0|T > t,x), the log of the expected
frailty of survivors, representing a form of interaction between duration and
the covariates.

In other words, the presence of unobserved heterogeneity in a subject-
specific proportional hazards model results in a population-average model
where the hazards are no longer proportional.

As a result, we conclude that unobserved heterogeneity is indeed con-
founded with proportionality of hazards. We can’t test for one without
assuming the other.

Example 1: My 1995 paper shows an example of a proportional hazards
models that, combined with gamma heterogeneity, leads to declining non-
proportional hazards.

But it also shows that exactly the same population hazards could have
been generated from a model with inverse Gaussian heterogeneity where the
individual hazards are non-proportional.

And of course, it is possible (though unlikely) that there is no unobserved
heterogeneity and the individual hazards look just like the population haz-
ards that we observe.

Ezxample 2: Suppose you have found that the following proportional
hazards model (with a constant baseline!) fits your data well:

At,z) = exp{a + 2'8} (7)

Before you conclude that the hazard is indeed constant for each individual,
consider the alternative subject-specific model

At,x,0) = Oexpla+ 2/ + U2tea+rlﬁ},

where heterogeneity has a gamma distribution with mean one and any vari-
ance o2 that you like. This is an accelerated life model with a Gompertz
baseline. You should be able to verify that this model leads to exactly the
same population-average hazard as Equation 7.

But there is more. Consider the following subject-specific model

At,z,0) = Qexp{a+ 2/ BY(1 + 0% exp{a + 2/ B}t),

where 6 has an inverse Gaussian distribution with mean one and variance
o2. In this model the hazard is a linear function of t. Again, you should be
able to verify that this model leads to the same population-average hazard
as Equation 7.

Thus, the hazards in Equation 7 could represent
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e homogeneous populations with constant risk,
e gamma frailty with Gompertz accelerated life, or
e inverse Gaussian frailty with linear risks.

The choice between these interpretations cannot be made on statistical
grounds.

In our next unit we will see that these models are in fact identified when
we have multiple observations, as we do in multivariate survival and event-
history models.
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